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1. Introduction

Connection matrices have been introduced by R. Franzosa [7] as an algebraic topological tool in
the study of Morse decompositions of flows on locally compact metric spaces. As observed by Rob-
bin and Salamon [11], in the setting of field coefficients the algebraic part of the construction of
connection matrix may be decoupled from the dynamical part by defining connection matrices for
lattice filtered chain complexes and applying this general concept to the lattice of attracting neigh-
boorhoods. Harker, Mischaikow and Spendlove [8] expand these ideas by introducing what they call
a Conley complex of a poset-graded chain complex or lattice-filtered chain complex. This is a poset
graded chain complex chain homotopic to the given one whose boundary map vanishes on the diag-
onal. They prove that Conley complex is unique up to a chain graded isomorphism. They define the
connection matrix of a poset-graded chain complex or lattice-filtered chain complex as the boundary
operator of a Conley complex. Since chain isomorphic complexes may differ in their boundary oper-
ators, the connection matrix need not be unique despite the fact that Conley complex is unique up to
isomorphism.

In this note we apply the ideas of [11, 8] to define connection matrices for Morse decompositions
of combinatorial multivector fields [10], an extension of Forman’s combinatorial vector fields [5, 6].
Combinatorial multivector fields may be constructed from clouds of vectors [10, 2]; hence, they con-
stitute a natural tool to analyze and classify dynamical data. The importance of connection matrices in
this context, similarly to the case of flows, lies in the fact that a non-zero entry in the connection ma-
trix implies the existence of a heteroclinic connection between the respective Morse sets. Moreover,
it is natural to expect that the Conley complex may be helpful in classifying dynamical data.

We present an example that also in the combinatorial setting connection matrices need not be
unique. But, we prove that they are unique in the case of Morse decomposition of a gradient combi-
natorial vector field. We also indicate some relations between persistence [3], combinatorial vector
fields [5] and Conley complexes [8].

2. Main result

A Lefschetz complex (see [10] for the definition), originally defined by S. Lefschetz and called a
cell complex in [8], is an abstraction of a finite combinatorial complex such as simplicial complex
or cubical complex. A Lefschetz complex consists of a set of cells X and a map κ which assigns to
every pair of cells a ring element called incidence coefficient. The incidence coefficient encodes the
face relation between cells. Cells constitute a natural basis of the associated chain complex C(X) with
boundary operator defined in terms of the incidence coefficents. In this note we assume that incidence
coefficients are from a fixed field F.

A remarkable feature of every Lefschetz complex is that the face relation in X induces a T0 Alexan-
drov topology T X on X. This makes every Lefschetz complex X a finite topological space (X,T X).

A combinatorial multivector field V on a Lefschetz complex X, originally defined in [10] and in
this note considered in a weaker version introduced in [2] (see also [9]), is a partition of X into non-
empty, locally closed sets (see [4, Sec. 2.7.1, pg 112]) in the topology T X. The elements of the
partition are called multivectors. A multivector is called a vector if it has no more than two elements.
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Figure 1. A multivector field (left) and its two combinatorial vector fields (middle and right).

In this case it has the form V = {V−,V+} where either V− = V+ or V− is a face of V+ of codimension
one.

A combinatorial multivector fieldV on a Lefschetz complex X induces a dynamical system on X.
This, in particular, means that one can define isolated invariant sets, attractors, repellers and Morse
decompostions [10]. For each Morse decompositionM there is a lattice of attracting neighbourhoods
which induces a lattice filtered chain complex. In particular, one can associate with M the Conley
complex and a non-empty collection of connection matrices. As we show in the next section, the
connection matrix need not be unique. But, we prove the following theorem.

Theorem 2.1. Assume V is a gradient combinatorial vector field on a Lefschetz complex X. Then,
the Morse decomposition consisting of all the critical cells ofV has precisely one connection matrix.
It coincides with the matrix of the boundary operator of the associated Morse complex.

3. An example

Three examples of a combinatorial multivector field are presented in in Figure 1. The middle and
right example are actually combinatorial vector fields, since there are no multivectors of cardinality
greater than two. All three examples have the same collection of critical cellsM := { B,C, F, AB,DF }
and M is a Morse decomposition for all of them. One can verify that the left example has two
connection matrices with coefficients in Z2:

C1 :=

B C F AB DF
B 0 0 0 1 1
C 0 0 0 1 0
F 0 0 0 0 1

AB 0 0 0 0 0
DF 0 0 0 0 0

and C2 :=

B C F AB DF
B 0 0 0 1 0
C 0 0 0 1 1
F 0 0 0 0 1

AB 0 0 0 0 0
DF 0 0 0 0 0

.

Hence, as in the case of classical dynamical systems, connection matrices in the combinatorial set-
ting need not be unique. However, as Theorem 2.1 implies, matrix C1 is the unique matrix of the
combinatorial multivector field in the middle and matrix C2 is the unique matrix of the combinatorial
multivector field in the right of Figure 1. Note that there are examples that the connection matrix need
not be unique also for non-gradient combinatorial vector fields.

4. Relation to persistence.

It is known that homological persistence [3] may be phrased in terms of combinatorial Morse
theory [1]. This observation may be extended to Conley complexes as follows. Assume that X =

{X0, X1, . . . Xn} is a filtration of a Lefschetz complex X, that is ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X is a
tower of T X-closed subcomplexes of X. For each x ∈ X let t(x) := min { i | x ∈ Xi } denote the time
of appearance of x in the filtration X. Denote by D(X) the persistence diagram of the associated
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filtration of chain complexes 0 = C(X0) ⊂ C(X1) ⊂ · · · ⊂ C(Xn). Recall that the persistence diagram
is a multiset consisting of pairs (p, q) where p is the birth time of a homology class and q is its death
time or infinity if the class never dies.

We say that a combinatorial vector field V on X is a persistence combinatorial vector field with
respect to the filtration X if the map α : V → D(X) given by

α(V) :=

(t(V−), t(V+)) if V− , V+,
(t(V−),∞) if V− = V+

is a bijection of multisets.
The filtration X is obviously a lattice with respect to union and intersection. This makes C(X) a

filtered chain complex and allows one to associate with X a Conley complex Con(X).

Theorem 4.1. Given a filtration X of a Lefschetz complex X there is another Lefschetz complex X̄
and a bijection θ : X 3 x 7→ x̄ ∈ X̄ such that

(i) X̄ := {θ(X0), θ(X1), . . . , θ(Xn)} is a filtration of X̄,
(ii) θ induces a chain isomorphism of filtered chain complexes C(X) and C(X̄),

(iii) X̄ admits a persistence combinatorial vector field with respect to X̄,
(iv) the Conley complexes of X and X̄ coincide,
(v) in particular, persistence diagrams of X and X̄ coincide.
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