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1. Introduction

In this note we present a method for topological features extraction of sampled vector fields. By
a sampled vector field we mean a finite set of points in Rd with vectors attached. Such data arise in
a natural way from sampling dynamics. As a real world example we study the data collected by the
Helioseismic and Magnetic Imager (HMI) - an instrument designed to study the magnetic field on
the surface of Sun [4]. We show that the proposed method significantly outperforms the presently
available methods in the HMI solar flare classification task. Our method is general and can be applied
to any sampled vector field data, however in this work we present results based only on HMI data.
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2. HMI data

The goal of HMI project is to study the relationship between the behavior of the photospheric
magnetic field and solar activity. In particular, space weather anomalies are linked to solar flares - a
sudden explosion of energy. Solar flares can interfere with satellites and also with equipment such as
power utility grids, electronics etc. Predicting solar flares is a challenging task. The recent prediction
techniques are based on machine learning (ML) methods. Typically, ML methods for solar flares
prediction use 25 numerical characteristics of the magnetic field, the so called data features: total
unsigned current helicity, total magnitude of Lorentz force etc.

3. Methodology

We propose to extract features of a sampled vector field using a method based on combinatorial
multivector fields [5], a generalization of Forman’s combinatorial vector fields [9, 8]. Namely, as a
first step we reconstruct dynamics given by a cloud of vectors by building a simplicial complex K on
the point cloud and a combinatorial multivector field V on K . This way we obtain a graph on the
set of all simplices with edges approximating the vector field. We analyze a collection of such graphs
using DeepWalk [2] approach which transforms graphs into text documents. Next we use Fasttext [1]
to learn embedding of words into Rd, where d is a fixed parameter. Using that embedding we get
a representation of the text documents in Rd. The representation gives us a feature vector for each
sampled vector field. In the following sections we present more details of the method.

3.1. Multivector fields. By a combinatorial dynamical system on a simplicial complex K (cds in
short) we mean a multivalued map F : K ( K, that is a map which sends each simplex in K into a
family of simplices in K. The cds F may be viewed as a digraph GF whose vertices are simplices in
K with a directed edge from simplex σ to simplex τ if and only if τ ∈ F(σ). However, F is more than
just the digraph GF because K, the set of vertices of GF , is a finite topological space with Alexandrov
topology given by the poset of face relation [11].

We construct a cds from a cloud of vectors in two steps. In the first step the cloud of vectors is
transformed into a combinatorial multivector field [5]. In the second step, the combinatorial multi-
vector field is transformed into a cds. In order to explain the steps, we introduce some definitions. We
say that A ⊂ K is convex if for any σ1, σ2 ∈ A and τ ∈ K such that σ1 is a face of τ and τ is a face of
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σ2 we have τ ∈ A. We note that convex subsets of K are precisely the locally closed sets of K (see [6,
Sec. 2.7.1, pg 112]) in the Alexandrov topology of K. We define a multivector as a convex subset of
K and a combinatorial multivector field on K (cmf in short) as a partition V of K into multivectors.
Given a cmf V, we denote by [σ]V the unique V in V such that σ ∈ V . We associate with V a cds
FV : K ( K given by FV(σ) := clσ ∪ [σ]V.

P Q

R S

P Q

R S

P Q

R S

Figure 1. Left: A cloud of vectors. Middle: A possible combinatorial multivector field
representation of the cloud of vectors. Right: The associated combinatorial dynamical
system represented as a digraph.

Figure 1(left) presents a toy example of a cloud of vectors. It consists of four vectors marked red
at four points P, Q, R, S. One of possible geometric simplicial complexes with vertices at points
P, Q, R, S is the simplicial complex K consisting of triangles PQR, QRS and its faces. A possible
multivector field V on K constructed from the cloud of vectors consists of multivectors {P,PR},
{R,QR}, {Q,PQ}, {PQR},{S,RS,QS,QRS}. It is indicated in Figure 1(middle) by orange arrows
between centers of mass of simplices. Note that in order to keep the figure legible, only arrows in the
direction increasing the dimension are marked. The singleton {PQR} is marked with an orange circle.
The associated combinatorial dynamical system FV presented as a digraph is in Figure 1(right). Note
that in general K andV are not uniquely determined by the cloud of vectors.

We denote by GV the graph obtained from GF by contracting to a point the vertices in GF sharing
the same multivector.

3.2. DeepWalk. In order to analyze a collection of graphs GV we use DeepWalk [2]. The method
is used to analyze graphs as text documents with Natural Language Processing (NLP). Given GV we
generate a set of paths, that is random walks of length not exceeding a fixed k. We assume that for each
vertex a word from a vocabulary is given as the vertex label. For a path p we generate a sentence by
replacing each vertex on p by its label. A set of such sentences constitutes a text document associated
with the set of paths. In this context the order of sentences is not important. For a given set of graphs
we consider the documents as a text corpus. Using NLP techniques, in particular Fasttext [1], we
learn the representation of words as vectors in Rd with a fixed d. Each document is represented as the
average of its word vectors.

3.3. Topological vocabulary. The NLP procedure described above requires a vocabulary in order to
assign labels to the vertices. We construct labels which graspe some local, topological properties of
the vertex in the vector field. More precisely given a multivector V ∈ V, that is a vertex in GV, we
first define the label of V at level 0, denoted l0(V), as a tuple

l0(V) := (max
σ∈V

dimσ, |V |, χ(V)),

where dimσ denotes the dimension of simplex σ, |V | stands for the cardinality of V , and χ(V) is the
Euler characteristic of V . We define label of V at level d , denoted ld(V), as a tuple

ld(V) := (l0(V), sorted({l0(u) | u ∈ N+
d (V)}), sorted({l0(u) | u ∈ N−d (V)})),

where N+
d (V) (resp. N−d (V)) are sets of vertices in the forward (resp. backward) distance from V not

bigger than d.
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As an example we consider the multivector field and the graph GF presented in Figure 1. Figure 2
presents the associated graph on multivectors GV. Table 1 presents step by step calculations of the
labels at level 1.
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Figure 2. GV graph for the example presented in Figure 1.

V simplices of V l0(V) N+
1 (V) N−1 (V) l1(V)

V1 {P,PR} (1, 2, 0) {V2} {V3,V4} ((1, 2, 0), [(1, 2, 0)], [(1, 2, 0), (2, 1, 1)])
V2 {R,QR} (1, 2, 0) {V3} {V1,V4,V5} ((1, 2, 0), [(1, 2, 0)], [(1, 2, 0), (2, 1, 1), (2, 4, 0)])
V3 {Q,QP} (1, 2, 0) {V1} {V2,V4,V5} ((1, 2, 0), [(1, 2, 0)], [(1, 2, 0), (2, 1, 1), (2, 4, 0)])
V4 {PQR} (2, 1, 1) {V1,V2,V3} ∅ ((2, 1, 1), [(1, 2, 0), (1, 2, 0), (1, 2, 0)], ∅)
V5 {S,RS,QS,QRS} (2, 4, 0) {V2,V3} ∅ ((2, 4, 0), [(1, 2, 0), (1, 2, 0)], ∅)

Table 1. Step by step calculation of labels at level 1 for the example presented in
Figure 1 and Figure 2

4. Results

To evaluate our method we use a data set proposed in [3]. The data set provides 823 HMI magne-
tograms. The state-of-the-art methods extract from each magnetogram 13 real number characteristics.
Additionally, for each magnetogram we know a flare class (B, C, M, and X) according to the maxi-
mum magnitude of flares generated in the approaching 24 hours. Our goal is to find an ML model for
the flare class prediction based on the megnetograms.

We use randomly selected 70% of the data as a training set, and the rest as a test set. We trans-
form the magnetograms from the training set into text documents and create a model of the artificial
language described above. Then, for each magnetogram (training and test), we create a new feature
vector using the word embeddings. We present results obtained with the following parameters:

• level of labels is k = 4;
• for each label l we select randomly 50% of vertices v in GV, such that lk(v) = l;
• for each selected vertex we generate a random walk which begins at v and a random walk

which ends at v, both of length 20;
• the dimension of the word embeddings is 40.

To compare the state-of-the-art feature vector with the new one we compare classification metrics
for LinearSVC [7] and AdaBoostClassifier [10] from sklearn python library. We provide classiffiers
scores in Table 2. We observe that the features based on the proposed word embeddings always
are significantly better than the state-of-the-art features. We emphesize that the proposed method
outperforms state-of-the-art for the test set.

Classifier test training

proposed feature vector LinearSVC 0.898 0.881
AdaBoostClassifier 0.846 0.994

state-of-the-art feature vector LinearSVC 0.417 0.392
AdaBoostClassifier 0.663 0.918

Table 2. Classifiers scores on test and training data sets.
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