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Abstract. Algebraic topology and dynamical systems are intimately related: the algebra may constrain
or force the existence of certain dynamics. Morse homology is the prototypical theory grounded in this
observation. Conley theory is a far-reaching topological generalization of Morse theory and the last few
decades have seen the development of a computational version of the Conley theory. The computational
Conley theory is a blend of combinatorics, order theory and algebraic topology and has proven effective
in tackling problems within dynamical systems.

Within the Conley theory the connection matrix is the mathematical object which transforms the ap-
proach into a truly homological theory; it is the Conley-theoretic generalization of the Morse boundary
operator. We’ll discuss a new formulation of the connection matrix theory, which casts the connection
matrix in categorical, homotopy-theoretic language. This enables the efficient computation of connec-
tion matrices via the technique of reductions in combination with algebraic-discrete Morse theory. We
will also discuss a software package for such computations. Time permitting, we’ll demonstrate our
techniques with an application of the theory and software to the setting of transversality models [9].
This application allows us to compute connection matrices for the classical examples of Franzosa [5]
and Reineck [13] as well as high-dimensional examples from a Morse theory on spaces of braid dia-
grams introduced in [6].

Introduction

Topology and algebraic invariants have played a prolific role in dynamical systems [1, 16]. Loosely
stated, a dynamical system engenders topological data: both local (e.g. fixed points) and global
(e.g. attractors). The topological data have associated algebraic invariants (e.g. homology) and the
relationship between local and global is codified in the algebra.

Morse theory is an influential instantiation of this idea wherein the local data (nondegenerate fixed
points) in the gradient flow ẋ(t) = −∇ f (x(t)) of generic map f : M → R are graded by their Morse
index and contribute to a chain complex (C•, ∂). The boundary operator is determined by the structure
of the connecting orbits. It is classical that the Morse homology H•(C•, ∂) is isomorphic to the singular
homology H•(M). Conley theory is a purely topological generalization of Morse theory: the index
of an isolated invariant set is a topological space whose homology gives a coarse description of the
unstable dynamics. Essential to the Conley index is the property of continuation: the index is robust
to perturbations of the system [1]. Our recent work [7] concerns developing a categorical, homotopy-
theoretic framework for the computation of connection matrices, the Conley-theoretic generalization
of the Morse boundary operator [5]. We outline a computational connection matrix theory and give
application to transversality models in [9]. Moreover in [8] we give the specifics on the particulars of
the algorithm, including a novel scheme for an implicit discrete Morse theory on cubical complexes.

Computation of ConnectionMatrices

Analogous to the Morse boundary operator, the connection matrix is a boundary operator defined
on Conley indices [5]. In contrast to the Morse boundary operator, the connection matrix is not
obtained directly from the trajectories, but it is related to them. This relationship implies the basic
utility of a connection matrix is to prove existence of connecting orbits [10]. At a higher level, it
serves as an algebraic representation of global dynamics and may used in some cases to construct
semi-conjugacies of the global attractor [3, 12]. Ultimately, the connection matrix completes the
Conley theory to a homological theory [11] for dynamical systems.

In recent work [7] we gave a categorical, homotopy-theoretic treatment of the connection matrix
theory. In this setting we can interpret a connection matrix as the boundary operator of a particularly
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simple representative of an isomorphism class in an appropriate homotopy category. We show that,
in the case of fields, the use of homotopy categories enables the connection matrix theory to be made
functorial.

Using the homotopy-theoretic framework, the computation of a connection matrix can be phrased
in terms of (filtered) reductions, a technique introduced in [4] and extensively used in [15]. In the
case of the computational Conley theory, where the typical input is a decomposition of a cell complex
into attracting blocks, we show that discrete Morse theory induces a reduction and can be used to
provide an efficient algorithm for computing connection matrices. This provides a purely algorithmic
and constructive proof of existence of connection matrices [5, 14]. Moreover, we’ll discuss publicly
available software packages for the connection matrix theory [2].

Application to aMorse Theory on Braids

As developed in [6], a set {un(t, x)} of solutions to a scalar parabolic partial differential equation
of the form ut = uxx + f (ux, u, x) may be lifted to (x, u, ux)-space to create a braid. The space of
braids partitions into isotopy braid classes and monotonicity properties of the PDE induce dynamics
on braid classes. Discretized braids (whose strands are piecewise linear) are a finite-dimensional
approximation to the space of braids. In this case the phase space partitions into a cubical complex
of discrete braid classes. The parabolic PDE induces dynamics on braid classes via the comparison
principle, which leads to the notion of a Conley index for braid classes. We will discuss applications
of the algorithms to compute connection matrices in this setting [9], including examples of 10 and
12-dimensional cubical complexes. The insights obtained from these high-dimensional computations
have led to new conjectures for the theory [9].
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