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THÉO LACOMBE

Persistence diagrams (PDs) appear as a core tool to encode topological information in data analysis.
PDs provide a concise way to summarize the underlying topology of a given object at all scales—
informally as a locally finite point cloud supported on the upper half-plane {(t1, t2) ∈ R2, t2 > t1}. The
space of these diagrams can be equipped with partial matching metrics, with theoretical guarantees
on the stability of diagrams under pertubations of input data. However, the computational cost of
such metrics is known to be prohibitive in large-scale applications, and the structure these metrics
induce on the space of PDs is non-linear. This makes the use of standard statistical tools or machine
learning techniques—even as simple as estimating Fréchet means or barycenters of a sample of PDs—
challenging. We present a way to address these issues by reformulating PD metrics as an optimal
partial transport problem [1], and show how recent advances in computational optimal transport [2, 3,
4] can be adapted to deal efficiently with large samples of PDs. In particular, regularizing the optimal
transport problem with an entropic penalization yields a convex problem that can be solved efficiently
with the Sinkhorn algorithm. Unlike previous methods to approximate PD metrics, this algorithm can
be parallelized and implemented efficiently on GPUs. These approximations are also differentiable,
leading to a simple and scalable method to estimate barycenters of PD samples. We showcase the
strength of this approach by estimating the Fréchet means and performing k-mean clustering with
diagram metrics on large PD samples [5].
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