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Persistence diagrams are a main tool in the field of Topological Data
Analysis (TDA). They contain fruitful information about shapes of under-
lying objects. However, performing machine learning algorithms or sta-
tistical methods directly on persistence diagrams is a challenging problem
due to the limitation of the space of persistence diagrams. For that reason,
summarizing and vectorizing these diagrams is an important topic currently
researched in TDA ([2, 1]). In this work, we develop a new way of summa-
rizing diagrams: Persistence Curves (PC), and show practical uses of PC to
several texture datasets.

The first part of the work devote to the foundation and theory of PCs. The
main construction of PCs comes from the Fundamental Lemma of Persis-
tent Homology, which reveals Betti numbers from persistence diagrams. As
an example, Euler Characteristics Curve (ECC) is a special case of PC. PCs
are family of curves and hence they can be used in a variety of situations
depending on the data. We prove a rigorous bound for a general family of
PCs. In particular, certain family of PCs admit the stability property. Fur-
thermore, we show that Persistence Landscapes (PL) are special cases of
PCs. PC provides the bridge from the classical ECC to modern PL.

The second part of the work is to apply PCs to real world applications.
We investigate classifications of texture images on the three well-know tex-
ture datasets: Outex [4], UIUCTex [5], and KHT-TIP [7], where sample
images are shown in Figure 1. Our results outperform some of TDA meth-
ods [3, 6] that applied to Outex. The performances for UIUCtex and KTH
also reveal strong evidence. PCs are intrinsic characteristics of textures.
Finally, we will show that PCs are simple and intuitive to implement.

(a) Outex (b) UIUCtex (c) KTH-Tips

Figure 1. Snapshots of the texture databases. Our best clas-
sification rate for each database are 99%, 92.4%, and 91.5%,
respectively.
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