Takeshi Fukao, Department of Mathematics, Kyoto University of Education

HOME > Research

Research

Research Subject and Activities

Mathematics

  • Nonlinear Analysis
  • Evolution Equation
  • Variational Inequality

Mathematics Education

  • Learning method of functions
  • Modelling

Research Activities

Articles

Recent 5 years

  1. M. Okumura, T. Fukao, D. Furihata, and S. Yoshikawa, A second-order accurate structure-preserving scheme for the Cahn–Hilliard equation with a dynamic boundary condition, Commun. Pure Appl. Anal., 21 (2022), 355–392. DOI: 10.3934/cpaa.2021181, arXiv
  2. M. Okumura and T. Fukao, A new structure-preserving scheme with the staggered space mesh for the Cahn–Hilliard equation under a dynamic boundary condition, Adv. Math. Sci. Appl., 30 (2021), 347–376.
  3. T. Fukao and H. Wu, Separation property and convergence to equilibrium for the equation and dynamic boundary condition of Cahn–Hilliard type with singular potential, Asymptotic Anal., 124 (2021), 303–341. DOI: 10.3233/ASY-201646, arXiv
  4. T. Fukao, On a perturbed fast diffusion equation with dynamic boundary conditions, Adv. Math. Sci. Appl., 29 (2020), 365–392. arXiv
  5. P. Colli and T. Fukao, Vanishing diffusion in a dynamic boundary condition for the Cahn–Hilliard equation, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Article number: 53, 1--27. DOI: 10.1007/s00030-020-00654-8, arXiv
  6. P. Colli, T. Fukao, and H. Wu, On a transmission problem for equation and dynamic boundary condition of Cahn–Hilliard type with nonsmooth potentials, Math. Nachr., 293 (2020), 2051–2081. DOI: 10.1002/mana.201900361(open access), arXiv
  7. P. Colli and T. Fukao, Cahn–Hilliard equation on the boundary with bulk condition of Allen–Cahn type, Adv. Nonlinear Anal., 9 (2020), 16–38. DOI: 10.1515/anona-2018-0055(open access), arXiv
  8. P. Colli, T. Fukao, and K. F. Lam, On a coupled bulk–surface Allen–Cahn system with an affine linear transmission condition and its approximation by a Robin boundary condition, Nonlinear Anal., 184 (2019), 116–147. DOI: 10.1016/j.na.2018.10.018, arXiv
  9. T. Fukao and T. Motoda, Abstract approach to degenerate parabolic equations with dynamic boundary conditions, Adv. Math. Sci. Appl., 27 (2018), 29–44. arXiv
  10. T. Fukao, S. Kurima, and T. Yokota, Nonlinear diffusion equations as asymptotic limits of Cahn–Hilliard systems on unbounded domains via Cauchy's criterion, Math. Methods Appl. Sci., 41 (2018), 2590–2601. DOI: 10.1002/mma.4760, arXiv
  11. T. Fukao and T. Motoda, Nonlinear diffusion equations with Robin boundary conditions as asymptotic limits of Cahn–Hilliard systems, J. Elliptic Parabol. Equ., 4 (2018), 271–291. DOI: 10.1007/s41808-018-0018-1, arXiv
  12. T. Fukao and N. Yamazaki, A boundary control problem for the equation and dynamic boundary condition of Cahn–Hilliard type, pp.255–280 in "Solvability, Regularity, Optimal Control of Boundary Value Problems for PDEs", Springer INdAM Series, Vol.22, Springer, Cham, 2017. DOI: 10.1007/978-3-319-64489-9_10
  13. T. Fukao, S. Yoshikawa, and S. Wada, Structure-preserving finite difference schemes for the Cahn–Hilliard equation with dynamic boundary conditions in the one-dimensional case, Commun. Pure Appl. Anal., 16 (2017), 1915–1938. DOI: 10.3934/cpaa.2017093
  14. T. Fukao, Y. Tsuzuki, and T. Yokota, Solvability of p-Laplacian parabolic equations with constraints coupled with Navier–Stokes equations in 3D domains by using largeness of p, Funkcial. Ekvac., 60 (2017), 1–20. DOI: 10.1619/fesi.60.1(open access)
  15. M. H. Farshbaf-Shaker, T. Fukao, and N. Yamazaki, Lagrange multiplier and singular limit of double-obstacle problems for the Allen–Cahn equation with constraint, Math. Methods Appl. Sci., 40 (2017), 5–21. DOI: 10.1002/mma.3905
  16. T. Fukao, Cahn–Hilliard approach to some degenerate parabolic equations with dynamic boundary conditions, pp.282–291 in "System Modeling and Optimization", IFIP Advances in Information and Communication Technology, Springer, 2016. DOI: 10.1007/978-3-319-55795-3_26
  17. T. Fukao, Convergence of Cahn–Hilliard systems to the Stefan problem with dynamic boundary conditions, Asymptot. Anal., 99 (2016), 1–21. DOI: 10.3233/ASY-161373, arXiv
  18. P. Colli and T. Fukao, Nonlinear diffusion equations as asymptotic limits of Cahn–Hilliard systems, J. Differential Equations, 260 (2016), 6930–6959. DOI: 10.1016/j.jde.2016.01.032, arXiv
All articles

Books

Nonlinear Analysis in Interdisciplinary Sciences:
Modellings, Theory and Simulations

5th

T. Aiki, T. Fukao, N. Kenmochi, M. Niezgódka, M. Ôtani ed.
GAKUTO International Series.
Mathematical Sciences and Applications ; Volume36
Gakkotosho (2013)
ISBN: 9784762504617

The Fifth Polish-Japanese Days on "Nonlinear Analysis in Interdisciplinary Sciences: Modellings, Theory and Simulations".

Copyright(C) Takeshi Fukao, KUE, All Rights Reserved.