HARMONIC CYCLES AND RATIONAL WINDING NUMBERS
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In this presentation, we discuss high-dimensional harmonic cycles. A harmonic cycle A is a discrete
harmonic form, i.e., a solution of the Laplacian equation

(0.1) A =0
with the Laplacian operator
0.2) DNy = 0ps10, 4 + 0,0,

obtained from the chain complex 9; : C;(X) — C;_1(X) of a cell complex X. By the combinatorial
Hodge theory, harmonic spaces are isomorphic to the homology groups with real coefficients. In
particular, an acyclic cell complex has only the trivial harmonic cycle. In our talk, we will mainly
address the case

(0.3) rk H,(X) =1, tk H,_1(X) = 0 and rk H,,1(X) =0,
and introduce a formula for the standard harmonic cycle X as a generator of the harmonic space,
(0.4) A=) w(Cy)Cy

%

where the summation is over the cycletrees Y with its minimal cycle Cy, and w(-) is the winding
number map. We will also discuss intriguing combinatorial properties of A with respect to (dual)
spanning trees, (dual) cycletrees, winding number w(-) and cutting number ¢(-), i.e., for example,

(0.5) Aoz =ky(X)w(z)and Ao z = k" (X)c(2)

where k,, (X) is the n-th tree number and £"(X) is the n-th dual tree number.
Furthermore, we will present an application for detecting the oscillation in flows for a periodic
dynamical system with random perturbations through a simple example.
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