対象論文:葛城元,黒田恭史「科学的思考方法の習得を目指したオリガミクスによる数学教材の開発 -ダイヤカット缶を題材として-」数学教育学会誌,Vol.57/No.3・4,pp.125-139, 2016
T. Fukao and T. Motoda, Nonlinear diffusion equations with Robin boundary conditions as asymptotic limits of Cahn–Hilliard systems, to appear in J. Elliptic Parabol. Equ. DOI: 10.1007/s41808-018-0018-1
T. Fukao and T. Motoda, Abstract approach to degenerate parabolic equations with dynamic boundary conditions, to appear in Adv. Math. Sci. Appl., 27 (2018), 29–44.
学生研究発表会
日程:2018年2月26日(月)
会場:関西学院大学大阪梅田キャンパス
算数と理科の連携した指導のあり方 -濃度を事例として-
○福永裕輝(京都教育大学大学院)・黒田恭史(京都教育大学) ※優秀発表賞受賞
異分母分数の除法の意味理解における認識特性 -大学生を対象とした認識調査から-
○市村優果・黒田恭史(京都教育大学) ※優秀発表賞受賞
日程:2017年8月24日(木) 14時00分~
会場:本学1A413教室
[1] 14:00~14:50 Hao Wu(School of Mathematical Sciences, Fudan University)
Title: Long-time Behavior of Nonlinear Evolution Equations: An Introduction to the Lojasiewicz–Simon Approach
Abstract: In this talk we will introduce the Lojasiewicz–Simon approach, which is an efficient method to investigate the long-time behavior of nonlinear evolution equations with multiple steady states. We first explain the main idea by using a simple example, i.e., the Allen–Cahn equation. Then we discuss the possible extensions to evolution equations with different structure.
14:50~15:10 Coffee Break
[2] 15:10~16:00 Hao Wu(School of Mathematical Sciences, Fudan University)
Title: Analysis of the Cahn–Hilliard–Hele-Shaw System with Singular Potential
Abstract: The Cahn–Hilliard–Hele-Shaw system is a fundamental diffuse-interface model for an incompressible binary fluid confined in a Hele-Shaw cell. In this talk, we will discuss the CHHS system with a physically relevant potential (i.e., of logarithmic type). We first prove the existence of global weak solutions with finite energy. Then in dimension two, we further obtain the uniqueness and regularity of global weak solutions. In particular, we show that any weak solution satisfies the so-called strict separation property. When the spatial dimension is three, we prove the existence of a unique global strong solution, provided that the initial datum is regular enough and sufficiently close to any local minimizer of the free energy. This also yields the local Lyapunov stability of the local minimizer itself. Finally, we show that any global solution will converge to a single equilibrium as time goes to infinity. This is a joint work with A. Giorgini and M. Grasselli (Politecnico di Milano).
[3] 16:00~ Free Discussion
日程:2017年6月17日(土) 10時30分~17時
会場:インテックス大阪
黒田教授の講義ライブ(30分)
講義タイトル「算数の文章問題の難しさを視線計測で解明!」
講義ライブの実施時間:5時限目(14:20~14:50)
講義内容はこちらから黒田教授の夢ナビTALK(3分)
夢ナビTALKの実施時間:3時限目(12:40~13:10)